Planar Hypohamiltonian Graphs on 40 Vertices

نویسندگان

  • Mohammadreza Jooyandeh
  • Brendan D. McKay
  • Patric R. J. Östergård
  • Ville Pettersson
  • Carol T. Zamfirescu
چکیده

A graph is hypohamiltonian if it is not Hamiltonian, but the deletion of any single vertex gives a Hamiltonian graph. Until now, the smallest known planar hypohamiltonian graph had 42 vertices, a result due to Araya and Wiener. That result is here improved upon by 25 planar hypohamiltonian graphs of order 40, which are found through computer-aided generation of certain families of planar graphs with girth 4 and a fixed number of 4-faces. It is further shown that planar hypohamiltonian graphs exist for all orders greater than or equal to 42. If Hamiltonian cycles are replaced by Hamiltonian paths throughout the definition of hypohamiltonian graphs, we get the definition of hypotraceable graphs. It is shown that there is a planar hypotraceable graph of order 154 and of all orders greater than or equal to 156. We also show that the smallest planar hypohamiltonian graph of girth 5 has 45 vertices. Email addresses: [email protected] (Mohammadreza Jooyandeh), [email protected] (Brendan D. McKay), [email protected] (Patric R. J. Österg̊ard), [email protected] (Ville H. Pettersson), [email protected] (Carol T. Zamfirescu) URL: http://www.jooyandeh.com (Mohammadreza Jooyandeh), http://cs.anu.edu.au/~bdm (Brendan D. McKay) Preprint submitted to Journal of Graph Theory February 23, 2016

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Cubic Planar Hypohamiltonian and Hypotraceable Graphs

We present a cubic planar hypohamiltonian graph on 70 vertices, improving the best known bound of 94 by Thomassen and derive some consequences concerning longest paths and cycles of planar 3-connected graphs. We also show that cubic planar hypohamiltonian graphs on n vertices exist for every even number n ≥ 86 and that cubic planar hypotraceable graphs exist on n vertices for every even number ...

متن کامل

Planar hypohamiltonian graphs

A graph is called hypohamiltonian if it is not hamiltonian but, when omitting an arbitrary vertex, it becomes hamiltonian. The smallest hypohamiltonian graph is the famous Petersen graph (found by Kempe in 1886) on 10 vertices. In 1963, Sousselier posed a problem of recreational nature, and thus began the study of hypohamiltonian graphs. Many authors followed, in particular Thomassen with a ser...

متن کامل

New results on hypohamiltonian and almost hypohamiltonian graphs

Consider a non-hamiltonian graph G. G is hypohamiltonian if for every vertex v in G, the graph G − v is hamiltonian. G is almost hypohamiltonian if there exists a vertex w in G such that G−w is non-hamiltonian, and G− v is hamiltonian for every vertex v 6= w. McKay asked in [J. Graph Theory, doi: 10.1002/jgt.22043] whether infinitely many planar cubic hypohamiltonian graphs of girth 5 exist. We...

متن کامل

Small Hypohamiltonian Graphs

A graph G is said to be hypohamiltonian if G is not hamiltonian but for each v ∈ V (G) the vertex deleted subgraph G − v is hamiltonian. In this paper we show that there is no hypohamiltonian graph on 17 vertices and thereby complete the answer to the question, “for which values of n do there exist hypohamiltonian graphs on n vertices?”. In addition we present an exhaustive list of hypohamilton...

متن کامل

A planar hypohamiltonian graph with 48 vertices

We present a planar hypohamiltonian graph on 48 vertices, and derive some consequences. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 338–342, 2007

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2017